Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Blood Coagul Fibrinolysis ; 32(7): 427-433, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-20233854

ABSTRACT

Immune thrombocytopenia is a haematological, autoimmune disorder characterized by elevated platelet demolition due to the presence of antiplatelet autoantibodies derived from B cells and to an irregular, deficient process of platelets production in bone marrow. In this review, after a brief presentation of 'old' strategies used nowadays yet, we focused on new drugs used in the treatment of immune thrombocytopenia and their mechanism of action and posology, basing on the last scientific literature. The observation that CoViD-19 can be associated with immune thrombocytopenia is also put in evidence. Particular attention will be dedicated on the concept that the ideal treatment should represent a solution not only for the failure of normal processes of production and survival of platelets, but also it should improve quality of life of patients, with minimum adverse events. Anyway, despite enormous advances of the last years, further investigations are necessary in order to define scrupulously long-term efficacy of new molecules proposed.


Subject(s)
Purpura, Thrombocytopenic, Idiopathic/drug therapy , Aminopyridines/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/complications , COVID-19/immunology , Histocompatibility Antigens Class I , Humans , Immunosuppressive Agents/therapeutic use , Morpholines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Purpura, Thrombocytopenic, Idiopathic/etiology , Purpura, Thrombocytopenic, Idiopathic/immunology , Pyrimidines/therapeutic use , Receptors, Fc/antagonists & inhibitors , Receptors, Thrombopoietin/agonists , SARS-CoV-2/immunology , Syk Kinase/antagonists & inhibitors , Thiazoles/therapeutic use , Thiophenes/therapeutic use
3.
Immunogenetics ; 75(3): 309-320, 2023 06.
Article in English | MEDLINE | ID: covidwho-2326450

ABSTRACT

The worldwide coronavirus disease 2019 pandemic was sparked by the severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2) that first surfaced in December 2019 (COVID-19). The effects of COVID-19 differ substantially not just between patients individually but also between populations with different ancestries. In humans, the human leukocyte antigen (HLA) system coordinates immune regulation. Since HLA molecules are a major component of antigen-presenting pathway, they play an important role in determining susceptibility to infectious disease. It is likely that differential susceptibility to SARS-CoV-2 infection and/or disease course in COVID-19 in different individuals could be influenced by the variations in the HLA genes which are associated with various immune responses to SARS-CoV-2. A growing number of studies have identified a connection between HLA variation and diverse COVID-19 outcomes. Here, we review research investigating the impact of HLA on individual responses to SARS-CoV-2 infection and/or progression, also discussing the significance of MHC-related immunological patterns and its use in vaccine design.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Immunogenetics , Histocompatibility Antigens Class I/genetics
4.
Int J Mol Sci ; 24(7)2023 Apr 04.
Article in English | MEDLINE | ID: covidwho-2299700

ABSTRACT

Interferons (IFNs), divided into type I, type II, and type III IFNs represent proteins that are secreted from cells in response to various stimuli and provide important information for understanding the evolution, structure, and function of the immune system, as well as the signaling pathways of other cytokines and their receptors. They exert comparable, but also distinct physiologic and pathophysiologic activities accompanied by pleiotropic effects, such as the modulation of host responses against bacterial and viral infections, tumor surveillance, innate and adaptive immune responses. IFNs were the first cytokines used for the treatment of tumor patients including hairy leukemia, renal cell carcinoma, and melanoma. However, tumor cells often develop a transient or permanent resistance to IFNs, which has been linked to the escape of tumor cells and unresponsiveness to immunotherapies. In addition, loss-of-function mutations in IFN signaling components have been associated with susceptibility to infectious diseases, such as COVID-19 and mycobacterial infections. In this review, we summarize general features of the three IFN families and their function, the expression and activity of the different IFN signal transduction pathways, and their role in tumor immune evasion and pathogen clearance, with links to alterations in the major histocompatibility complex (MHC) class I and II antigen processing machinery (APM). In addition, we discuss insights regarding the clinical applications of IFNs alone or in combination with other therapeutic options including immunotherapies as well as strategies reversing the deficient IFN signaling. Therefore, this review provides an overview on the function and clinical relevance of the different IFN family members, with a specific focus on the MHC pathways in cancers and infections and their contribution to immune escape of tumors.


Subject(s)
COVID-19 , Neoplasms , Humans , Interferons/metabolism , Antigen Presentation , COVID-19/genetics , Major Histocompatibility Complex , Cytokines/genetics , Histocompatibility Antigens Class I/genetics , Neoplasms/genetics
5.
Viruses ; 15(4)2023 03 31.
Article in English | MEDLINE | ID: covidwho-2305757

ABSTRACT

Differences in SARS-CoV-2-specific immune responses have been observed between individuals following natural infection or vaccination. In addition to already known factors, such as age, sex, COVID-19 severity, comorbidity, vaccination status, hybrid immunity, and duration of infection, inter-individual variations in SARS-CoV-2 immune responses may, in part, be explained by structural differences brought about by genetic variation in the human leukocyte antigen (HLA) molecules responsible for the presentation of SARS-CoV-2 antigens to T effector cells. While dendritic cells present peptides with HLA class I molecules to CD8+ T cells to induce cytotoxic T lymphocyte responses (CTLs), they present peptides with HLA class II molecules to T follicular helper cells to induce B cell differentiation followed by memory B cell and plasma cell maturation. Plasma cells then produce SARS-CoV-2-specific antibodies. Here, we review published data linking HLA genetic variation or polymorphisms with differences in SARS-CoV-2-specific antibody responses. While there is evidence that heterogeneity in antibody response might be related to HLA variation, there are conflicting findings due in part to differences in study designs. We provide insight into why more research is needed in this area. Elucidating the genetic basis of variability in the SARS-CoV-2 immune response will help to optimize diagnostic tools and lead to the development of new vaccines and therapeutics against SARS-CoV-2 and other infectious diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibody Formation , Histocompatibility Antigens Class I , HLA Antigens/genetics , Histocompatibility Antigens , CD8-Positive T-Lymphocytes , Peptides , Histocompatibility Antigens Class II
6.
Arch Immunol Ther Exp (Warsz) ; 71(1): 9, 2023 Mar 10.
Article in English | MEDLINE | ID: covidwho-2303763

ABSTRACT

The interest in NK cells and their cytotoxic activity against tumour, infected or transformed cells continuously increases as they become a new efficient and off-the-shelf agents in immunotherapies. Their actions are balanced by a wide set of activating and inhibitory receptors, recognizing their complementary ligands on target cells. One of the most studied receptors is the activating CD94/NKG2C molecule, which is a member of the C-type lectin-like family. This review is intended to summarise latest research findings on the clinical relevance of NKG2C receptor and to examine its contribution to current and potential therapeutic strategies. It outlines functional characteristics and molecular features of CD94/NKG2C, its interactions with HLA-E molecule and presented antigens, pointing out a key role of this receptor in immunosurveillance, especially in the human cytomegalovirus infection. Additionally, the authors attempt to shed some light on receptor's unique interaction with its ligand which is shared with another receptor (CD94/NKG2A) with rather opposite properties.


Subject(s)
Histocompatibility Antigens Class I , NK Cell Lectin-Like Receptor Subfamily C , Humans , Killer Cells, Natural , Ligands
7.
Dokl Biochem Biophys ; 507(1): 289-293, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2303710

ABSTRACT

Numerous studies showed that diabetes mellitus (DM) increases the risk of death from COVID-19 by five times. It is generally accepted that the high lethality of COVID-19 against the background of DM is due to the main complications of this disease: micro- and macroangiopathies, as well as heart and kidney failure. In addition, it was shown that acute respiratory viral infection increases the production of interferon gamma, increases muscle resistance to insulin, and modulates the activity of effector CD8+ T cells. The ability of CD8+ T cells to recognize SARS-CoV-2-infected cells depends not only on humoral factors but also on individual genetic characteristics, including the individual set of major histocompatibility complex class I (MHC-I) molecules. In this study, the relationship of the MHC-I genotype of patients with DM aged less than 60 years with the outcome of COVID-19 was studied using a sample of 222 patients. It was shown that lethal outcomes of COVID-19 in patients with DM are associated with the low affinity of the interaction of an individual set of MHC-I molecules with SARS-CoV-2 peptides.


Subject(s)
COVID-19 , Diabetes Mellitus , Humans , Middle Aged , COVID-19/genetics , SARS-CoV-2 , Histocompatibility Antigens Class I/genetics , Genotype
9.
Front Immunol ; 13: 1101526, 2022.
Article in English | MEDLINE | ID: covidwho-2259532

ABSTRACT

Introduction: Cell entry of SARS-CoV-2 causes genome-wide disruption of the transcriptional profiles of genes and biological pathways involved in the pathogenesis of COVID-19. Expression allelic imbalance is characterized by a deviation from the Mendelian expected 1:1 expression ratio and is an important source of allele-specific heterogeneity. Expression allelic imbalance can be measured by allele-specific expression analysis (ASE) across heterozygous informative expressed single nucleotide variants (eSNVs). ASE reflects many regulatory biological phenomena that can be assessed by combining genome and transcriptome information. ASE contributes to the interindividual variability associated with the disease. We aim to estimate the transcriptome-wide impact of SARS-CoV-2 infection by analyzing eSNVs. Methods: We compared ASE profiles in the human lung cell lines Calu-3, A459, and H522 before and after infection with SARS-CoV-2 using RNA-Seq experiments. Results: We identified 34 differential ASE (DASE) sites in 13 genes (HLA-A, HLA-B, HLA-C, BRD2, EHD2, GFM2, GSPT1, HAVCR1, MAT2A, NQO2, SUPT6H, TNFRSF11A, UMPS), all of which are enriched in protein binding functions and play a role in COVID-19. Most DASE sites were assigned to the MHC class I locus and were predominantly upregulated upon infection. DASE sites in the MHC class I locus also occur in iPSC-derived airway epithelium basal cells infected with SARS-CoV-2. Using an RNA-Seq haplotype reconstruction approach, we found DASE sites and adjacent eSNVs in phase (i.e., predicted on the same DNA strand), demonstrating differential haplotype expression upon infection. We found a bias towards the expression of the HLA alleles with a higher binding affinity to SARS-CoV-2 epitopes. Discussion: Independent of gene expression compensation, SARS-CoV-2 infection of human lung cell lines induces transcriptional allelic switching at the MHC loci. This suggests a response mechanism to SARS-CoV-2 infection that swaps HLA alleles with poor epitope binding affinity, an expectation supported by publicly available proteome data.


Subject(s)
COVID-19 , Humans , Alleles , Epitopes , Haplotypes , Lung , Methionine Adenosyltransferase , SARS-CoV-2 , Histocompatibility Antigens Class I/genetics
10.
Genes Genomics ; 45(4): 451-456, 2023 04.
Article in English | MEDLINE | ID: covidwho-2269272

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is currently a global pandemic. The pathogenesis of severe COVID-19 has been widely investigated, but it is still unclear. Human leukocyte antigen (HLA) plays a central role in immune response, and its variants might be related to COVID-19 progression and severity. OBJECTIVE: To investigate the hypothesis that individual HLA variations could alter the course of COVID-19 and might be associated with the severity of COVID-19. METHODS: In this study, we conducted an HLA targeted capture enrichment and sequencing of severe COVID-19 patients matched to mild cases. A total of 16 COVID-19 patients, confirmed by SARS-CoV-2 viral RNA polymerase-chain-reaction (PCR) test and chest computed tomography (CT) scan, were enrolled in this study. The HLA targeted capture enrichment and sequencing were conducted. HLA typing was performed by comparing contigs with IPD-IMGT/HLA Database. RESULTS: In this study, 139 four-digit resolution HLA alleles were acquired. The results showed that HLA-DRB3*01:01 allele was significantly associated with the severity of COVID-19 (odds ratio [OR] = 27.64, 95% confidence interval [CI] = 1.35-560.50, P = 0.0064). And HLA-K*01:01 might be a potential risk factor for COVID-19 severity (OR = 0.11, 95% CI = 0.017-0.66, P = 0.019), but HLA-K*01:02 might be a protective factor (OR = 7.50, 95% CI = 1.48-37.92, P = 0.019). CONCLUSION: Three non-classical HLA alleles, including HLA-DRB3*01:01, HLA-K*01:01, HLA-K*01:02 were identified to be associated with the severity of COVID-19 by comparing mild and severe patients. The current findings would be helpful for exploring the influence of HLA gene polymorphisms on the development and severity of COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , HLA-DRB3 Chains/genetics , SARS-CoV-2 , Histocompatibility Antigens Class I/genetics , HLA Antigens/genetics
11.
Hum Immunol ; 84(8): 384-392, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2251762

ABSTRACT

Human Leukocyte Antigens (HLA) are classified in three different classes I, II and III, and represent the key mediators of immune responses, self-tolerance development and pathogen recognition. Among them, non-classical subtypes (HLA-Ib), e.g. HLA-E and HLA-G, are characterize by tolerogenic functions that are often exploited by viruses to evade the host immune responses. In this perspective, we will review the main current data referred to HLA-G and HLA-E and viral infections, as well as the impact on immune response. Data were selected following eligibility criteria accordingly to the reviewed topic. We used a set of electronic databases (Medline/PubMed, Scopus, Web of Sciences (WOS), Cochrane library) for a systematic search until November 2022 using MeSH keywords/terms (i.e. HLA, HLA-G, HLA-E, viral infection, SARS-CoV-2, etc.…). Recent studies support the involvement of non-classical molecules, such as HLA-E and HLA-G, in the control of viral infection. On one side, viruses exploit HLA-G and HLA-E molecule to control host immune activation. On the other side, the expression of these molecules might control the inflammatory condition generated by viral infections. Hence, this review has the aim to summarize the state of art of literature about the modulation of these non-classical HLA-I molecules, to provide a general overview of the new strategies of viral immune system regulation to counteract immune defenses.


Subject(s)
COVID-19 , Virus Diseases , Humans , HLA-G Antigens , SARS-CoV-2 , Histocompatibility Antigens Class I , HLA Antigens/genetics
12.
Proc Natl Acad Sci U S A ; 119(41): e2209042119, 2022 10 11.
Article in English | MEDLINE | ID: covidwho-2288486

ABSTRACT

Viruses employ a variety of strategies to escape or counteract immune responses, including depletion of cell surface major histocompatibility complex class I (MHC-I), that would ordinarily present viral peptides to CD8+ cytotoxic T cells. As part of a screen to elucidate biological activities associated with individual severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) viral proteins, we found that ORF7a reduced cell surface MHC-I levels by approximately fivefold. Nevertheless, in cells infected with SARS-CoV-2, surface MHC-I levels were reduced even in the absence of ORF7a, suggesting additional mechanisms of MHC-I down-regulation. ORF7a proteins from a sample of sarbecoviruses varied in their ability to induce MHC-I down-regulation and, unlike SARS-CoV-2, the ORF7a protein from SARS-CoV lacked MHC-I downregulating activity. A single amino acid at position 59 (T/F) that is variable among sarbecovirus ORF7a proteins governed the difference in MHC-I downregulating activity. SARS-CoV-2 ORF7a physically associated with the MHC-I heavy chain and inhibited the presentation of expressed antigen to CD8+ T cells. Specifically, ORF7a prevented the assembly of the MHC-I peptide loading complex and caused retention of MHC-I in the endoplasmic reticulum. The differential ability of ORF7a proteins to function in this way might affect sarbecovirus dissemination and persistence in human populations, particularly those with infection- or vaccine-elicited immunity.


Subject(s)
Antigen Presentation , CD8-Positive T-Lymphocytes , COVID-19 , Histocompatibility Antigens Class I , Viral Proteins , Amino Acids , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Histocompatibility Antigens Class I/immunology , Humans , Major Histocompatibility Complex , Peptides , SARS-CoV-2 , Viral Proteins/immunology
13.
J Immunother ; 46(3): 75-88, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2269388

ABSTRACT

The high mortality of coronavirus disease 2019 is related to poor antigen presentation and lymphopenia. Cytomegalovirus and the herpes family encode a series of major histocompatibility complex (MHC)-like molecules required for targeted immune responses to achieve immune escape. In this present study, domain search results showed that many proteins of the severe acute respiratory syndrome coronavirus 2 virus had MHC-like domains, which were similar to decoys for the human immune system. MHC-like structures could bind to MHC receptors of immune cells (such as CD4 + T-cell, CD8 + T-cell, and natural killer-cell), interfering with antigen presentation. Then the oxygen free radicals generated by E protein destroyed immune cells after MHC-like of S protein could bind to them. Mutations in the MHC-like region of the viral proteins such as S promoted weaker immune resistance and more robust transmission. S 127-194 were the primary reason for the robust transmission of delta variants. The S 144-162 regulated the formation of S trimer. The mutations of RdRP: G671S and N: D63G of delta variant caused high viral load. S 62-80 of alpha, beta, lambda variants were the important factor for fast-spreading. S 616-676 and 1014-1114 were causes of high mortality for gamma variants infections. These sites were in the MHC-like structure regions.


Subject(s)
Antigen Presentation , COVID-19 , Humans , Histocompatibility Antigens Class I/genetics , SARS-CoV-2/metabolism , Major Histocompatibility Complex , Histocompatibility Antigens
14.
Hum Immunol ; 84(4): 263-271, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2231052

ABSTRACT

BACKGROUND: HLA-E interaction with inhibitory receptor, NKG2A attenuates NK-mediated cytotoxicity. NKG2A overexpression by SARS-CoV-2 exhausts NK cells function, whereas virus-induced down-regulation of MHC-Ia reduces its derived-leader sequence peptide levels required for proper binding of HLA-E to NKG2A. This leads HLA-E to become more complex with viral antigens and delivers them to CD8+ T cells, which facilitates cytolysis of infected cells. Now, the fact that alleles of HLA-E have different levels of expression and affinity for MHC Ia-derived peptide raises the question of whether HLA-E polymorphisms affect susceptibility to COVID-19 or its severity. METHODS: 104 COVID-19 convalescent plasma donors with/without history of hospitalization and 18 blood donors with asymptomatic COVID-19, all were positive for anti-SARS-CoV-2 IgG antibody as well as a group of healthy control including 68 blood donors with negative antibody were subjected to HLA-E genotyping. As a privilege, individuals hadn't been vaccinated against COVID-19 and therefore naturally exposed to the SARS-CoV-2. RESULTS: The absence of HLA-E*01:03 allele significantly decreases the odds of susceptibility to SARS-CoV-2 infection [p = 0.044; OR (95 %CI) = 0.530 (0.286 - 0.983)], suggesting that HLA-E*01:01 + HLA-E*01:01 genotype favors more protection against SARS-CoV-2 infection. HLA-E*01:03 + HLA-E*01:03 genotype was also significantly associated with more severe COVID-19 [p = 0.020; 2.606 (1.163 - 5.844) CONCLUSION: Here, our observation about lower susceptibility of HLA-E*01:01 + HLA-E*01:01 genotype to COVID-19 could be clinical evidence in support of some previous studies suggesting that the lower affinity of HLA-E*01:01 to peptides derived from the leader sequence of MHC class Ia may instead shift its binding to virus-derived peptides, which then facilitates target recognition by restricted conventional CD8+ T cells and leads to efficient cytolysis. On the other hand, according to other studies, less reactivity of HLA-E*01:01 with NKG2A abrogates NK cells or T cells inhibition, which may also lead to a greater cytotoxicity against SARS-CoV-2 infected cells compared to HLA-E*01:03. Taken together given HLA-E polymorphisms, the data presented here may be useful in identifying more vulnerable individuals to COVID-19 for better care and management. Especially since along with other risk factors in patients, having HLA-E*01:03 + HLA-E*01:03 genotype may also be associated with the possibility of severe cases of the disease.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , CD8-Positive T-Lymphocytes , SARS-CoV-2 , COVID-19 Serotherapy , Histocompatibility Antigens Class I , Peptides , Genotype
15.
Hum Immunol ; 84(4): 272-277, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2220764

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection could present in a clinical spectrum of varying severity. Human leukocyte antigen (HLA) is a crucial component of the viral antigen presentation pathway and immune response to the virus. Therefore, we aimed to assess the impact of HLA allele polymorphisms on the susceptibility to SARS-CoV-2 infection and related mortality in Turkish kidney transplant recipients and wait listed patients, along with clinical characteristics of the patients. We analysed data from 401 patients with clinical characteristics according to presence (n = 114, COVID+) or absence of SARS-CoV-2 infection (n = 287, COVID-) who had previously been HLA typed to support transplantation. The incidence of coronavirus disease-19 (COVID-19) was 28 %, and the mortality rate was 19 % in our wait listed/ transplanted patients. Multivariate logistic regression analysis showed that a significant HLA association between HLA- B*49 (OR = 2.57, 95 % CI, 1.13-5.82; p = 0.02) and HLA- DRB1*14 (OR = 2.48, 95 % CI, 1.18-5.20; p = 0.01) with SARS-CoV-2 infection. Besides, in COVID + patients, HLA-C*03 was correlated to mortality (OR = 8.31, 95 % CI, 1.26-54.82; P = 0.03). The new finding from our analysis suggests that HLA polymorphisms could be associated with the occurrence of SARS-CoV-2 infection and COVID-19 mortality in Turkish patients with renal replacement therapy. This study may provide new information for the clinician to identify and manage sub-populations at risk in the setting of the current COVID-19 pandemic.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2 , Pandemics , Histocompatibility Antigens Class I , Renal Replacement Therapy , HLA-B Antigens , Histocompatibility Antigens Class II
16.
Anal Biochem ; 666: 115075, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2220352

ABSTRACT

Human leukocyte antigen (HLA) plays a vital role in immunomodulatory function. Studies have shown that immunotherapy based on non-classical HLA has essential applications in cancer, COVID-19, and allergic diseases. However, there are few deep learning methods to predict non-classical HLA alleles. In this work, an adaptive dual-attention network named DapNet-HLA is established based on existing datasets. Firstly, amino acid sequences are transformed into digital vectors by looking up the table. To overcome the feature sparsity problem caused by unique one-hot encoding, the fused word embedding method is used to map each amino acid to a low-dimensional word vector optimized with the training of the classifier. Then, we use the GCB (group convolution block), SENet attention (squeeze-and-excitation networks), BiLSTM (bidirectional long short-term memory network), and Bahdanau attention mechanism to construct the classifier. The use of SENet can make the weight of the effective feature map high, so that the model can be trained to achieve better results. Attention mechanism is an Encoder-Decoder model used to improve the effectiveness of RNN, LSTM or GRU (gated recurrent neural network). The ablation experiment shows that DapNet-HLA has the best adaptability for five datasets. On the five test datasets, the ACC index and MCC index of DapNet-HLA are 4.89% and 0.0933 higher than the comparison method, respectively. According to the ROC curve and PR curve verified by the 5-fold cross-validation, the AUC value of each fold has a slight fluctuation, which proves the robustness of the DapNet-HLA. The codes and datasets are accessible at https://github.com/JYY625/DapNet-HLA.


Subject(s)
COVID-19 , Deep Learning , Humans , Histocompatibility Antigens Class I/metabolism , HLA Antigens , Binding Sites
17.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: covidwho-2225340

ABSTRACT

HLA genes play a pivotal role in the immune response via presenting the pathogen peptides on the cell surface in a host organism. Here, we studied the association of HLA allele variants of class I (loci A, B, C) and class II (loci DRB1, DQB1, DPB1) genes with the outcome of COVID-19 infection. We performed high-resolution sequencing of class HLA I and class II genes based on the sample population of 157 patients who died from COVID-19 and 76 patients who survived despite severe symptoms. The results were further compared with HLA genotype frequencies in the control population represented by 475 people from the Russian population. Although the obtained data revealed no significant differences between the samples at a locus level, they allowed one to uncover a set of notable alleles potentially contributing to the COVID-19 outcome. Our results did not only confirm the previously discovered fatal role of age or association of DRB1*01:01:01G and DRB1*01:02:01G alleles with severe symptoms and survival, but also allowed us to single out the DQB1*05:03:01G allele and B*14:02:01G~C*08:02:01G haplotype, which were associated with survival. Our findings showed that not only separate allele, but also their haplotype, could serve as potential markers of COVID-19 outcome and be used during triage for hospital admission.


Subject(s)
COVID-19 , Histocompatibility Antigens Class II , Histocompatibility Antigens Class I , Humans , Alleles , COVID-19/genetics , COVID-19/mortality , Gene Frequency , Haplotypes , HLA-DRB1 Chains/genetics , Russia/epidemiology
18.
Semin Immunol ; 66: 101725, 2023 03.
Article in English | MEDLINE | ID: covidwho-2211448

ABSTRACT

T-cell immunity, mediated by CD4+ and CD8+ T cells, represents a cornerstone in the control of viral infections. Virus-derived T-cell epitopes are represented by human leukocyte antigen (HLA)-presented viral peptides on the surface of virus-infected cells. They are the prerequisite for the recognition of infected cells by T cells. Knowledge of viral T-cell epitopes provides on the one hand a diagnostic tool to decipher protective T-cell immune responses in the human population and on the other hand various prophylactic and therapeutic options including vaccination approaches and the transfer of virus-specific T cells. Such approaches have already been proven to be effective against various viral infections, particularly in immunocompromised patients lacking sufficient humoral, antibody-based immune response. This review provides an overview on the state of the art as well as current studies regarding the identification and characterization of viral T-cell epitopes and approaches of clinical application. In the first chapter in silico prediction tools and direct, mass spectrometry-based identification of viral T-cell epitopes is compared. The second chapter provides an overview of commonly used assays for further characterization of T-cell responses and phenotypes. The final chapter presents an overview of clinical application of viral T-cell epitopes with a focus on human immunodeficiency virus (HIV), human cytomegalovirus (HCMV) and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), being representatives of relevant viruses.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Humans , Epitopes, T-Lymphocyte , SARS-CoV-2 , Histocompatibility Antigens Class I
19.
Proc Natl Acad Sci U S A ; 120(1): e2208525120, 2023 01 03.
Article in English | MEDLINE | ID: covidwho-2186693

ABSTRACT

Major histocompatibility complex class I (MHC-I) molecules, which are dimers of a glycosylated polymorphic transmembrane heavy chain and the small-protein ß2-microglobulin (ß2m), bind peptides in the endoplasmic reticulum that are generated by the cytosolic turnover of cellular proteins. In virus-infected cells, these peptides may include those derived from viral proteins. Peptide-MHC-I complexes then traffic through the secretory pathway and are displayed at the cell surface where those containing viral peptides can be detected by CD8+ T lymphocytes that kill infected cells. Many viruses enhance their in vivo survival by encoding genes that down-regulate MHC-I expression to avoid CD8+ T cell recognition. Here, we report that two accessory proteins encoded by SARS-CoV-2, the causative agent of the ongoing COVID-19 pandemic, down-regulate MHC-I expression using distinct mechanisms. First, ORF3a, a viroporin, reduces the global trafficking of proteins, including MHC-I, through the secretory pathway. The second, ORF7a, interacts specifically with the MHC-I heavy chain, acting as a molecular mimic of ß2m to inhibit its association. This slows the exit of properly assembled MHC-I molecules from the endoplasmic reticulum. We demonstrate that ORF7a reduces antigen presentation by the human MHC-I allele HLA-A*02:01. Thus, both ORF3a and ORF7a act post-translationally in the secretory pathway to lower surface MHC-I expression, with ORF7a exhibiting a specific mechanism that allows immune evasion by SARS-CoV-2.


Subject(s)
COVID-19 , Histocompatibility Antigens Class I , SARS-CoV-2 , Viral Regulatory and Accessory Proteins , Humans , Antigen Presentation , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , HLA Antigens , Peptides , SARS-CoV-2/metabolism , Viral Regulatory and Accessory Proteins/metabolism
20.
PLoS One ; 18(1): e0276700, 2023.
Article in English | MEDLINE | ID: covidwho-2197028

ABSTRACT

COVID-19 is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The severity of COVID-19 is highly variable and related to known (e.g., age, obesity, immune deficiency) and unknown risk factors. The widespread clinical symptoms encompass a large group of asymptomatic COVID-19 patients, raising a crucial question regarding genetic susceptibility, e.g., whether individual differences in immunity play a role in patient symptomatology and how much human leukocyte antigen (HLA) contributes to this. To reveal genetic determinants of susceptibility to COVID-19 severity in the population and further explore potential immune-related factors, we performed a genome-wide association study on 284 confirmed COVID-19 patients (cases) and 95 healthy individuals (controls). We compared cases and controls of European (EUR) ancestry and African American (AFR) ancestry separately. We identified two loci on chromosomes 5q32 and 11p12, which reach the significance threshold of suggestive association (p<1x10-5 threshold adjusted for multiple trait testing) and are associated with the COVID-19 susceptibility in the European ancestry (index rs17448496: odds ratio[OR] = 0.173; 95% confidence interval[CI], 0.08-0.36 for G allele; p = 5.15× 10-5 and index rs768632395: OR = 0.166; 95% CI, 0.07-0.35 for A allele; p = 4.25×10-6, respectively), which were associated with two genes, PPP2R2B at 5q32, and LRRC4C at 11p12, respectively. To explore the linkage between HLA and COVID-19 severity, we applied fine-mapping analysis to dissect the HLA association with mild and severe cases. Using In-silico binding predictions to map the binding of risk/protective HLA to the viral structural proteins, we found the differential presentation of viral peptides in both ancestries. Lastly, extrapolation of the identified HLA from the cohort to the worldwide population revealed notable correlations. The study uncovers possible differences in susceptibility to COVID-19 in different ancestral origins in the genetic background, which may provide new insights into the pathogenesis and clinical treatment of the disease.


Subject(s)
COVID-19 , Genetic Predisposition to Disease , Humans , COVID-19/epidemiology , COVID-19/genetics , Florida , Genome-Wide Association Study , Histocompatibility Antigens Class I/genetics , HLA Antigens , SARS-CoV-2 , White/genetics , Black or African American/genetics
SELECTION OF CITATIONS
SEARCH DETAIL